Dr. Bahadır Fatih Yıldırım

Özgeçmiş Akademik Blog Portfolyo Dokümanlar Kütüphane

M35

JMcDM: A Julia Package for Multiple-Criteria Decision-Making Tools

Prof. Dr. Mehmet Hakan Satman

İstanbul Üniversitesi Department of Econometrics, Faculty of Economics

Dr. Öğr. Üyesi Bahadır Fatih Yıldırım

İstanbul Üniversitesi Faculty of Transportation and Logistics, Department of Transportation

Ersagun Kuruca

İstanbul Teknik Üniversitesi

Abstract

JMcDM is a Julia package that implements some leading multiple-criteria decision-making tools for both researchers and developers. By having a REPL tool, Julia is well suited for researchers to perform their analysis using different methods and comparing their results. JMcDM also provides the necessary infrastructure, utility functions, and a standardized API for implementing recently published methods. The package brings MCDM (Multiple-Criteria Decision-Making) tools to a relatively new language such as Julia with its significant performance promises. Besides Julia being a new language, the methods developed in the package are designed to be familiar to users who previously used the R and Python languages. This paper presents the basics of the design, example usage, and code snippets

Keywords: Julia, MCDM

  • Adams, W., & Saaty, R. (2003). Super decisions software guide. In Super Decisions (Vol. 9, p. 43). https://superdecisions.com/sd…
  • Bana e Costa, C. A., Corte, J.-M. de, & Vansnick, J.-C. (2011). MACBETH (measuring attractiveness by a categorical based evaluation technique). John Wiley & Sons, Inc. https://doi.org/10.1002/97804…
  • Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/14100…
  • Brans, J.-P., & Vincke, P. (1985). Note—a preference ranking organisation method: (the PROMETHEE method for multiple criteria decision-making). In Management science (No. 6; Vol. 31, pp. 647–656). INFORMS. https://doi.org/10.1287/mnsc.…
  • Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. In Control and cybernetics (Vol. 35, pp. 445–469).
  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-…
  • Churchman, C. W., & Ackoff, R. L. (1954). An approximate measure of value. Journal of the Operations Research Society of America, 2(2), 172–187. https://doi.org/10.1287/opre.…
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.…
  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763–770. https://doi.org/10.1016/0305-…
  • Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. In Battelle Geneva Research Center, Geneva, Switzerland (pp.1–8).
  • Ghorabaee, M. K., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.15388/info…
  • Greco, S., Figueira, J., & Ehrgott, M. (2016). Multiple criteria decision analysis (Vol. 37). Springer. https://doi.org/10.1007/978-1…
  • Hwang, C.-L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58–191). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3…
  • Jablonsky, J. (2014). MS Excel based software support tools for decision problems with multiple criteria. Procedia Economics and Finance, 12, 251–258. https://doi.org/10.1016/s2212…
  • Ju-Long, D. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288–294. https://doi.org/10.1016/s0167…
  • Keshavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decisionmaking. In Economic Computation and Economic Cybernetics Studies and Research (No. 3; Vol. 50, pp. 25–44). Academy of Economic Studies in Bucharest. http://www.ecocybase.ro/nr201…
  • Mareschal, B., & Smet, Y. D. (2009, December). Visual PROMETHEE: Developments of the PROMETHEE - GAIA multicriteria decision aid methods. 2009 IEEE International Conference on Industrial Engineering and Engineering Management. https://doi.org/10.1109/ieem.…
  • Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. In Faculty of Civil Engineering, Belgrade (No. 1; Vol. 2, pp. 5–21).
  • Opricovic, S., & Tzeng, G.-H. (2002). Multicriteria planning of post-earthquake sustainable reconstruction. Computer-Aided Civil and Infrastructure Engineering, 17(3), 211–220. https://doi.org/10.1111/1467-…
  • Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC). Expert Systems with Applications, 42(6), 3016–3028. https://doi.org/10.1016/j.esw…
  • Pamučar, D., Vasin, L., & Lukovac, L. (2014). Selection of railway level crossings for investing in security equipment using hybrid TEL-MARICA model. XVI International ScientificExpert Conference on Railway, Railcon, 89–92. https://doi.org/10.13140/2.1.…
  • Roy, B. (1968). Classement et choix en présence de points de vue multiples. RAIRO - Operations Research - Recherche Opérationnelle, 2(V1), 57–75. https://doi.org/10.1051/ro/19…
  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-…
  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.153…
  • Stević, Željko, Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231. https://doi.org/10.1016/j.cie…
  • Triantaphyllou, E., & Mann, S. H. (1989). An examination of the effectiveness of multidimensional decision-making methods: A decision-making paradox. Decision Support Systems, 5(3), 303–312. https://doi.org/10.1016/0167-…
  • Yadav, V., Karmakar, S., Kalbar, P. P., & Dikshit, A. K. (2019). PyTOPS: A Python based tool for TOPSIS. SoftwareX, 9, 217–222. https://doi.org/10.1016/j.sof…
  • Yazdani, M., Zarate, P., Zavadskas, E. K., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501–2519. https://doi.org/10.1108/md-05…
  • Zavadskas, Edmundas Kazimieras, Kaklauskas, A., & Sarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. In Technological and economic development of economy (No. 3; Vol. 1, pp. 131–139).
  • Zavadskas, Edmundas Kazimieras, & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. In Technological and Economic Development of Economy (No. 2; Vol. 16, pp. 159–172). Taylor & Francis. https://doi.org/10.3846/tede.…
  • Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2012). Optimization of weighted aggregated sum product assessment. Electronics and Electrical Engineering, 122(6). https://doi.org/10.5755/j01.e…
  • Zhu, J. (2014). Quantitative models for performance evaluation and benchmarking. Springer International Publishing. https://doi.org/10.1007/978-3…
  • Makale
    Satman, M.H. (2023). Comparison of outlier detection methods in linear regression: A multiple-criteria decisionmaking approach. Acta Infologica. Advance Online Publication https://doi.org/10.26650/acin.1327370
  • Kumar, A., Singh, A. K., & Garg, A. (2023). Evaluation of machine learning techniques for heart disease prediction using multi-criteria decision making. Journal of Intelligent & Fuzzy Systems, Preprint(Preprint), 1–15. https://doi.org/10.3233/JIFS-233443
  • Snášel, V., Perfilieva, I., Singh, M., Pant, M., Alijani, Z., & Kong, L. (2023). A rankability-based fuzzy decision making procedure for oil supplier selection. Applied Soft Computing, 149, 110956. https://doi.org/10.1016/j.asoc.2023.110956
  • Kizielewicz, B., Shekhovtsov, A., & Sałabun, W. (2023). pymcdm—The universal library for solving multi-criteria decision-making problems. SoftwareX, 22, 101368. doi: 10.1016/j.softx.2023.101368
  • Makale
    Karakaş Geyik, S., Satman, M.H., & Kalyoncu, G. (2022). G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi. Ekoist: Journal of Econometrics and Statistics, 0(37), 27-52. doi:10.26650/ekoist.2022.37.1161945
  • Makale
    Mejía-de-Dios, & Mezura-Montes. (2022). Metaheuristics: A Julia Package for Single- and Multi-Objective Optimization. Journal of Open Source Software, 7(78), 4723. doi: 10.21105/joss.04723.
  • Satman, M. H., Yıldırım, B. F. & Kuruca, E. (). JMcDM: A Julia Package for Multiple-Criteria Decision-Making Tools. The Journal of Open Source Software, 6(65), 1-6. https://doi.org/10.21105/joss.03430